Shear-induced increase in hydraulic conductivity in endothelial cells is mediated by a nitric oxide-dependent mechanism.
نویسندگان
چکیده
This study addresses the role of nitric oxide (NO) and its downstream mechanism in mediating the shear-induced increase in hydraulic conductivity (L(p)) of bovine aortic endothelial cell monolayers grown on porous polycarbonate filters. Direct exposure of endothelial monolayers to 20-dyne/cm(2) shear stress induced a 4. 70+/-0.20-fold increase in L(p) at the end of 3 hours. Shear stress (20 dyne/cm(2)) also elicited a multiphasic NO production pattern in which a rapid initial production was followed by a less rapid, sustained production. In the absence of shear stress, an exogenous NO donor, S-nitroso-N-acetylpenicillamine, increased endothelial L(p) 2.23+/-0.14-fold (100 micromol/L) and 4.8+/-0.66-fold (500 micromol/L) at the end of 3 hours. In separate experiments, bovine aortic endothelial cells exposed to NO synthase inhibitors, N(G)-monomethyl-L-arginine and N(G)-nitro-L-arginine methyl ester, exhibited significant attenuation of shear-induced increase in L(p) in a dose-dependent manner. Inhibition of guanylate cyclase (GC) with LY-83,583 (1 micromol/L) or protein kinase G (PKG) with KT5823 (1 micromol/L) failed to attenuate the shear-induced increase in L(p). Furthermore, direct addition of a stable cGMP analogue, 8-bromo-cGMP, had no effect in altering baseline L(p), indicating that the GC/cGMP/PKG pathway is not involved in shear stress-NO-L(p) response. Incubation with iodoacetate (IAA), a putative inhibitor of glycolysis, dose-dependently increased L(p). Addition of IAA at levels that did not affect baseline L(p) greatly potentiated the response of L(p) to 20-dyne/cm(2) shear stress. Finally, both shear stress-induced and IAA-induced increases in L(p) could be reversed with the addition of dibutyryl cAMP. However, additional metabolic inhibitors, 2 deoxyglucose (10 mmol/L) and oligomycin (1 micromol/L), or reactive oxygen species scavengers, deferoxamine (1 mmol/L) and ascorbate (10 mmol/L), failed to alter shear-induced increases in L(p). Our results show that neither the NO/cGMP/PKG pathway nor a metabolic pathway mediates the shear stress-L(p) response. An alternate mechanism downstream from NO that is sensitive to IAA must mediate this response.
منابع مشابه
Effect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress.
Significant changes in transvascular pressure occur in pulmonary hypertension, microgravity, and many other physiological and pathophysiological circumstances. Using bovine aortic endothelial cells grown on porous, rigid supports, we demonstrate that step changes in transmural pressure of 10, 20, and 30 cmH(2)O induce significant elevations in endothelial hydraulic conductivity (L(p)) that requ...
متن کاملThe endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity.
Recent in vitro and in vivo studies have reported fluid shear stress-induced increases in endothelial layer hydraulic conductivity (L(p)) that are mediated by an increased production of nitric oxide (NO). Other recent studies have shown that NO induction by shear stress is mediated by the glycocalyx that decorates the surface of endothelial cells. Here we find that a selective depletion of the ...
متن کاملHeparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species.
We investigated the nonlinear dynamics of the pressure vs. hydraulic conductivity (L(p)) relationship in lung microvascular endothelial cells and demonstrate that heparan sulfates, an important component of the endothelial glycocalyx, participate in pressure-sensitive mechanotransduction that results in barrier dysfunction. The pressure vs. L(p) relationship was complex, possessing both time- a...
متن کاملRegulation of capillary hydraulic conductivity in response to an acute change in shear.
The effects of mechanical perturbations (shear stress, pressure) on microvascular permeability primarily have been examined in micropipette-cannulated vessels or in endothelial monolayers in vitro. The objective of this study is to determine whether acute changes in blood flow shear stress might influence measurements of hydraulic conductivity (L(p)) in autoperfused microvessels in vivo. Rat me...
متن کاملExploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2000